Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Homel Secur Emerg Manag ; 19(1): 1-25, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35880037

RESUMO

Emergency managers (EMs) need nuanced data that contextualize the local-scale risks and impacts posed by major storm events (e.g. hurricanes and nor'easters). Traditional tools available to EMs, such as weather forecasts or storm surge predictions, do not provide actionable data regarding specific local concerns, such as access by emergency vehicles and potential communication disruptions. However, new storm models now have sufficient resolution to make informed emergency management at the local scale. This paper presents a Participatory Action Research (PAR) approach to capture critical infrastructure managers concerns about hurricanes and nor'easters in Providence, Rhode Island (USA). Using these data collection approach, concerns can be integrated into numerical storm models and used in emergency management to flag potential consequences in real time during the advance of a storm. This paper presents the methodology and results from a pilot project conducted for emergency managers and highlights implications for practice and future academic research.

2.
PLoS One ; 8(11): e80874, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278336

RESUMO

Climate change will affect the composition of plant and animal communities in many habitats and geographic settings. This presents a dilemma for conservation programs--will the portfolio of protected lands we now have achieve a goal of conserving biodiversity in the future when the ecological communities occurring within them change? Climate change will significantly alter many plant communities, but the geophysical underpinnings of these landscapes, such as landform, elevation, soil, and geological properties, will largely remain the same. Studies show that extant landscapes with a diversity of geophysical characteristics support diverse plant and animal communities. Therefore, geophysically diverse landscapes will likely support diverse species assemblages in the future, although which species and communities will be present is not altogether clear. Following protocols advanced in studies spanning large regions, we developed a down-scaled, high spatial resolution measure of geophysical complexity based on Ecological Land Units (ELUs) and examined the relationship between plant species richness, ecological community richness, and ELU richness (number of different ELU types). We found that extant landscapes with high ELU richness had a greater variety of ecological community types and high species richness of trees, shrubs, and herbaceous plants. We developed a spatial representation of diverse ELU landscapes to inform local conservation practitioners, such as land trusts, of potential conservation targets that will likely support diverse faunas and floras despite the impact of climate change.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Guias como Assunto , Biodiversidade , Geografia , Plantas , Rhode Island , Solo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...